

Inhaled AAT Phase II/III Update of Study Results May 19th, 2015, Denver Colorado, 2015

Forward Looking Statement

This presentation is not intended to provide investment or medical advice. It should be noted that some products under development described herein have not been found safe or effective by any regulatory agency and are not approved for any use outside of clinical trials.

This presentation contains forward-looking statements, which express the current beliefs and expectations of Kamada's management. Such statements involve a number of known and unknown risks and uncertainties that could cause Kamada's future results, performance or achievements to differ significantly from the results, performance or achievements expressed or implied by such forward-looking statements. Important factors that could cause or contribute to such differences include risks relating to Kamada's ability to successfully develop and commercialize its pharmaceutical products, the progress and results of any clinical trials, the introduction of competing products, the impact of any changes in regulation and legislation that could affect the pharmaceutical industry, the difficulty of predicting U.S. Food and Drug Administration, European Medicines Agency and other regulatory authority approvals, the regulatory environment and changes in the health policies and structures of various countries, environmental risks, changes in the worldwide pharmaceutical industry and other factors that are discussed in Kamada's prospectus related to this offering.

This presentation includes certain non-GAAP financial information, which is not intended to be considered in isolation or as a substitute for, or superior to, the financial information prepared and presented in accordance with GAAP. The non-GAAP financial measures may be calculated differently from, and therefore may not be comparable to, similarly titled measures used by other companies. A reconciliation of these non-GAAP financial measures to the comparable GAAP measures is included in an appendix to this presentation. Management uses these non-GAAP financial measures for financial and operational decision-making and as a means to evaluate period-to-period comparisons. Management believes that these non-GAAP financial measures provide meaningful supplemental information regarding Kamada's performance and liquidity.

Forward-looking statements speak only as of the date they are made, and Kamada undertakes no obligation to update any forward-looking statement to reflect the impact of circumstances or events that arise after the date the forward-looking statement was made. You should not place undue reliance on any forward-looking statement and should consider the uncertainties and risks noted above, as well as the risks and uncertainties more fully discussed under the heading "Risk Factors" of Kamada's 2014 Annual Report on Form 20-F filed with the U.S. Securities and Exchange Commission on April 29, 2015.

Introduction Slide

Program Chair

PROF. ROBERT A. SANDHAUS Professor of Medicine, National Jewish Health Hospital and University of Colorado Denver, Division of Pulmonary, Critical Care and Sleep Medicine, Denver, Colorado

Panel Members

PROF. KENNETH R. CHAPMAN Director, Canadian Registry for Alpha1 Anti-trypsin Deficiency Asthma and Airway Centre, Toronto Western Hospital University of Toronto, Toronto, Canada

PROF. GERRY MCELVANEY Beaumont Hospital Professor of Medicine at RCSI, Dublin, Ireland

PROF. ROBERT .A. STOCKLEY Lung Investigation Unit, Queen Elizabeth Hospital, Birmingham University Birmingham, United Kingdom

DR. JAN STOLK Department of Pulmonology, Leiden University Medical Center Leiden, The Netherlands

Kamada is presenting:

Study Results - Update

Phase II/III, Double-Blind, Randomized, Placebo-Controlled, Multicenter, International Study Evaluating the Safety and Efficacy of Inhaled, Human, Alpha-1 Antitrypsin (AAT) in Alpha-1 Antitrypsin Deficient Patients with Emphysema

Results are presented for the double blind part of the study

Study Information

Study Indication

Investigational Product and reference therapy

Study Design

- Treatment of alpha-1 antitrypsin deficiency in subjects with clinically demonstrable emphysema.
- Aerosolized (inhaled) human (plasma-derived) AAT at 80 mg, 4ml inhalation X 2/day.
- The placebo comprises the non-active ingredients of the AAT preparation.
- eFlow® inhalation device- PARI Pharma GmbH.
- Phase II-III ; Double-blind; Randomized placebo-controlled; Multicenter, intrl' study.
- 168 subjects, Randomized 1:1 AAT; placebo
- 50 weeks double blind ; 50 weeks OLE
- Trial designed in accordance with EMA scientific advise/ protocol assistance and EU draft guidance for COPD trials

Study Information - Sites

Site in study **DSMB** members

Sites: UK, SC, IR, SW, DK, CA, NL, GR DSMB: IT, USA, ES

Primacy

Largest Study First of its kind, largest, IH AAT study

E-Diary

Use of e-Diary to collect robust natural history and efficacy/ safety data

Efficacy

First controlled randomized trial to demonstrate lung function efficacy

Main Inclusion / Exclusion Criteria

Inclusion ¹ 2	Adults with AAT deficiency FEV1/FVC <70% and FEV1 < 80%
3	At least two exacerbations in the last 18 months from screening.
4	. AAT deficient subjects who are either naïve (not receiving IV augmentation therapy) or AAT deficient subjects receiving IV augmentation therapy.
Exclusion ¹	. History of lung transplant; Any lung surgery within the past two years.
2	Active smoking during the last 12 months from screening date.
3	IgA Deficiency
4	. History of life threatening allergy, anaphylactic reaction, or systemic response to human plasma derived products.

Study Endpoints

Primary

 The time from randomization to the first event-based exacerbation with a severity of moderate or severe.

Secondary

- Time to first eventbased exac. (mild, moderate or severe)
- Severity of the first event-based exac.
- Rate of event-based exac.

U	

Safety

- Adverse Events
- Lung Function
- Vital Signs
- Physical Exam
- ECG
- Laboratory Evaluations

Regulatory guidance as to efficacy indicated: Importance of secondary endpoint including rate and severity of exacerbation as well as review of totality of the data arising from the trial

What has changed?

Analysis Strategy

Lung Function

Exacerbation symptoms

Safety

Study Results

Baseline Characteristics

	AAT (N=85)	Placebo (N=83)
Males Females	51 (60.0%) 34 (40.0%)	49 (59.0%) 34 (41.0%)
Mean age ± SD (years) Age ≥ 60 years	56.5 ± 9.9 38 (44.7%)	54.4 ± 10.3 26 (31.3%)
Race: Caucasian	79 (100%)	75 (100%)
BMI (kg/m²): mean ± SD BMI <20	25.8 ± 4.6 8 (9.4%)	26.3 ± 5.5 4 (4.8%)
Oxygen users	18 (21.2%)	10 (12.0%)
FEV_1 (L): mean \pm SD	1.32 ± 0.49	1.33 ± 0.53
$FEV_1\%$ (%): mean \pm SD	42.8 ± 14.8	41.8 ± 14.7
DLCO (mMol/min/kPa): mean \pm SD	4.23 ± 1.61	4.59 ± 1.96

Spirometry Measures (MMRM)

FEV1 (L) - MMRM

Spirometry Measures (MMRM)

FEV1/SVC - MMRM

Spirometry Measures (MMRM)

	Least Squares Means (SE)		Least Squares Means			
lung	(Changes at W	/eek 50 from	P-Value	(SE) (overa	ll treatment	P-Value
Lung	Baseline)		(Changes at	effect)		(Overall
Function	AAT	Placebo	Week 50)	AAT	Placebo	Effect)
	(N= 84)	(N= 81)		(N= 84)	(N= 81)	
	-12mL	-62mL		+15mL	-27mL	
FEV ₁ (L)	-0.01183	-0.06216	0.0956	0.01503	-0.02718	0.0268
	(0.02196)	(0.02036)		(0.01338)	(0.01322)	
FEV ₁ (% of	-0.1323	-1.6205	0 1022	0.5404	-0.6273	
predicted)	(0.6649)	(0.6140)	0.1032	(0.4451)	(0.4425)	0.0658
	0.6183	-1.0723	0.0122	0.6230	-0.8715	0.0074
fev ₁ /SVC (%)	(0.5015)	(0.4455)	0.0132	(0.3931)	(0.3804)	0.0074

SE in brackets MMRM = Mixed Model Repeated Measure

Diffusing Capacity (MMRM)

	Least Squares Means			Least Squares Means		P-Value
	(SE) (Changes at Week		DValue	(SE) (overall		(Mixed Linear
Lung	50 from I	Baseline)	P-value	treatmer	nt effect)	Model -
Function	ΑΑΤ	Placebo	Week 50)	AAT	Placebo	Overall
	(N= 84)	(N= 81)		(N= 84)	(N= 81)	Fffoot)
						Ellect)
	-0.2704	-0.3054	0 7407	-0.2011	-0.1640	0 6401
DEGO	(0.07713)	(0.07182)	0.1 +01	(0.05585)	(0.05577)	0.0401
DLCO (% of	-2.9103	-3.5785	0 5020	-2.1459	-1.8723	0 7740
predicted)	(0.9058)	(0.8459)	0.5920	(0.6721)	(0.6734)	0.7748
	-0.02858	-0.02464	0.0240	-0.02672	-0.00953	0.2500
DLCO/VA	(0.01359)	(0.01299)	0.6349	(0.01061)	(0.01071)	0.2560
DLCO/VA (%	-2.1951	-1.8049	0 7720	-2.0143	-0.7094	0.2415
of predicted)	(0.9686)	(0.9232)	0.7720	(0.7777)	(0.7851)	0.2415

SE in brackets

No Difference Between Groups

Nature of First Exacerbation

Symptom Based Exacerbation Analysis						
Major Three (3) Exacerbation Symptoms by Severity: Dyspnea; Sputum Volume; Sputum Color						
	Possible Manifestations					
Exacerbation Type/Category	Category Classification Rules		Sputum Volume **	Sputum Color ^{**}		
Туре І	All 3 symptoms at high score	+	+	+		
		+	+			
Туре II	Two of the 3 symptoms at high score	+		+		
			+	+		
		+				
Type III	One of the 3 symptoms at high score		+			
				+		

Scores (by severity):

*5, 10, 15, 20 for Dyspnea (high severity score ≥10)

** 1, 2, 3, 4 for Sputum volume and Sputum color (high severity score \geq 2)

Nature of the First Exacerbation

177	Ν		
	AAT	Placebo	P Value
Type/Category	N=85	N=83	
Туре І	16 (18.8%)	26 (31.3%)	0.0614
Туре II	23 (27.1%)	12 (14.5%)	0.0444
Type III	34 (40.0%)	33 (39.8%)	0.9746
None	12 (14.1%)	12 (14.5%)	0.9498

AAT may change the nature of the Exacerbation (Potential change from Type I to Type II) Type I+II \rightarrow Type I exacerbation stands for 41% within total of type I+ II exacerbations for AAT group vs. 68% for placebo group.

Symptom Score MMRM Analysis of First (Types I+II+III) Exacerbation Severity for each major Symptom

(during 0-10 and 0-14 days of the exacerbation event)

			MMRM			
Symptom	Exac. Type	Dave	Least Squa	P_\/علياه*		
Symptom		Days	AAT	Placebo	F-Value	
			N=73	N=71		
Ducanaa		0-10	11.9464	12.2548	0.0243	
Dysphea		0-14	11.5803	11.7832	0.0817	
Sputum	All Types (I, II, III)	0-10	1.2748	1.3837	0.0334	
Volume		0-14	1.2367	1.3206	0.0595	
Sputum		0-10	2.1566	2.0137	0.0502	
Color		0-14	2.0240	1.8393	0.0032	

*Adjustment to age, oxygen, BMI, Country, Treatment Duration

During first Exacerbation, AAT group improves significantly Dyspnea and Sputum volume symptoms

Continuous Symptom Score – Dyspnea

Dyspnea 4 Week Moving Average Graphs

Continuous Symptom Score – Well Being

Safety: Mean AE per Patient by Month

Month	AAT	Placebo
1	1.75	1.14
2	0.78	0.69
3	0.96	0.71
4	0.87	0.53
5	0.71	0.9
6	0.78	0.47
7	0.63	0.51
8	0.6	0.59
9	0.63	0.74
10	0.78	0.53
11	0.37	0.51
12	0.83	0.71

- There were no AE indicating immunogenicity and/or clinical indication of bronchospasms
- No specific AE pattern
- Most AEs relate to underlying disease
- No Anaphylactic reactions
- Nature of AEs was similar between groups.

Strengths vs. Constraints

In Summary

- 1. Efficacy in lung function (statistically significant)
- Change in the nature of exacerbations (reduction in number of Type 1exacerbations (trend) and reduction in dyspnea score (statistically significant)
- 3. Safe and tolerable drug
- 4. Orphan designated drug
- 5. <u>Unmet patient need</u> Clinical primacy in efficacy data for IH AAT and AATD in general

Moving Forward

EMA – EU Front

- Compilation of an MAA dossier
- EMA submission (centralized procedure) end of 2015

FDA –US Front

 Approach US-FDA with results in H2 2015to obtain guidance on the clinical/ regulatory pathway for licensing the IH AAT by Kamada in the US.

Kamada is committed to the AATD patient community to bring the IH AAT into the market place and provide an adequate, safe and efficacious answer to current unmet medical need of these orphan patients.

SPECIAL THANKS TO...

To our study investigators

Dr. Jan Stolk Prof. Rob Stockley Prof. Kenneth Chapman Prof. Gerry McElvaney Prof. William McNee Dr. Eeva Piitulainen Prof. Dr. Claus Vogelmeier Prof. Dr. Dr. Robert Bals Dr. Kevin Flwood Dr. Abboud Raja Dr. Niels Seersholm Dr. Michael Runold Prof. Nick Hopkinsons

To Dr. Pablo Fernandez, our Medical advisor

To our DSMB

Dr. Marc Miravitlles Dr. Maurizio Luisetti Prof. Victor DeGruttola

To our patients in the study

To the entire Kamada team

To AIR Group

To our study nurses & coordinators

To our study CRO, QP, labs, logistics and other vendors

To our bio- statisticians

team

Thank You

Thank you

